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ABSTRACT 

Full validation of a model involves a number of steps. The first is to ensure that the model represents the 

required domain adequately (content validation). The second is to ensure that the principles underlying 

the model make reasonable use of current understanding of the problem space (construct validity). If the 

model meets these two criteria there is a requirement that the predictions of the model represent what 

happens in the “real world” to an adequate degree (predictive validity). The predictive validity of models 

that characterise human physiological response or low level human physical and cognitive performance 

can be conducted using statistical tools suitable for the analysis of interval data such as analysis of 

variance. When a model is developed that describes choice of course of action, an important element of 

human behavioural modelling, the outcomes are necessarily discrete and the volume of data available for 

analysis is typically smaller than desirable for validation over a broad scope. Any stream of similar 

decisions in a military context is likely to be aimed at maintaining the real world outcome close to a 

desired profile drawn up at the planning stage. In this way the process of taking decisions and monitoring 

their implementation is analogous to the process of tracking, embodied in such activities as driving a 

vehicle. The approach is applied directly to a tracking task to illustrate the interaction between a stream 

of decisions and outcomes and the problems of generalising the approach to more complex situations is 

discussed. 

1.0 INTRODUCTION 

Validation of human models has been the topic of a number of papers over the past decade since the team 

headed by Pew and Mavor (1998) published their seminal work on the state of the art of Human 

Behaviour Representation. Many of these papers lament the lack of validation in Human Behaviour 

Representation (HBR) and human performance models and while a number do directly compare 

predictions with observations (e.g. Foyle et al., 2005), many immediately fall back on informal, face 

validation: TLAR (that looks about right ) or BOGSAT (bunch of guys sitting around the table: Campbell 

& Bolton, 2005).  For many, colloquial definition of the validity of a concept or a model means accurate 

representation of real world events (Trochim & Donnelly, 2007). In general, absolute comparisons with 

the real world may not be the most appropriate starting point for addressing the validity of a model. 

Formal models are typically abstractions of the processes that we believe explain observed events, and 

therefore models often deliberately ignore aspects of the real world experience. Trying to validate a model 

as an accurate representation of the real world events is, in this strict sense, doomed to failure, and an 

alternative approach should be sought. 

1.1 Problems of Validating HBR Models 

There are particular challenges in the validation of HBR models. The study of HBR in constructive 

simulation conducted by the HFM 128 panel (Lotens et al., 2009) identified a large number of processes 

that have to be represented in a complete model of human behaviour, including perception, cognition, 

physiology and interactions between these elements. The study concluded that an important element of 
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any model representation is the division into internal state and consequent performance. Identifying 

internal states has a long history in psychological theory of more than 100 years since the Yerkes Dodson 

law of optimal arousal was developed in 1908 (Yerkes & Dodson, 1908). A state such as arousal is 

fundamentally a model construct and is intrinsically unobservable. It is not possible to validate models of 

the evolution of such states by direct comparison with real world observations, and indirect methods have 

to be employed. Progress has been made with some of the state constructs by using subjective 

observations, such as subjective measures of alertness. It has proved possible to relate alertness to the 

experience of individuals in terms of sleep patterns and time of day (Belyavin and Spencer 2004) and to 

demonstrate that a subjective assessment made under similar conditions is reproducible – a minimum 

requirement for the definition of a state. Similar problems arise with the definition of elements of 

cognitive performance in that most of the processes cannot be observed directly. At a higher level, the 

same strictures apply to the elements of interactions between individuals. 

1.2 Validation Criteria 

To meet this challenge Cronbach & Meehl (1955) proposed a more broadly based approach to the 

validation of psychometric models. They proposed that validation should be conducted using three 

assessments of validity: Construct Validity, Content Validity and Predictive Validity. The definitions of 

the three validity criteria are as follows: 

• Construct validity is attained if the model is built using accepted theoretical constructs about how 

the object in question functions or accepted abstractions of the object to be modelled are deemed 

suitable for the intended use.  

• Content validity is attained if the range of applicability of the model, that is the range of 

independent variables and component models, meets the requirements criteria of its intended use 

and, in particular, encompasses the range of applications proposed. 

• Predictive validity is attained if a model a capable of reproducing real-world observations to the 

required degree of fidelity for the proposed application of the model. 

Construct validity is based on a Subject Matter Expert (SME) assessment of the foundations of the overall 

model and its components. This implies that both the individual components and their modelled 

interactions should be subjected to the same process. If an HBR formally models internal state and uses 

this to moderate some aspect of cognitive performance, the process of moderation has to be valid as well 

as the model of the evolution of state and the distinct model of cognitive performance. 

Content validity should also be applied to each of the component models separately and to the way the 

components interact. The key question is whether the phenomena represented by the models span the 

range demanded by the requirement and whether the parameters used to define the models span a plausible 

space of values in that context. The majority of the judgments again have to be based on SME opinion, 

backed by measures where they are available. 

Predictive validity is tested by comparing the output of the model with real-world observations. Ideally 

formal statistically methods should be employed to make the comparisons although in extremis SME 

opinion may have to be accepted. In principle, a multi-component simulation can pass the predictive 

validation criterion if it is able to predict the pattern of real-world data that were not used to build the 

model. The weakness in this logic is that any simulation involving multiple components could satisfy this 

criterion and yet be built with individual components that would not meet the target if considered in 

isolation. An HBR model is particularly vulnerable to this possibility in that there are many elements of 

human physiology and psychology that may be represented in a full HBR model, that are homeostatic – 

provide negative feedback in control systems terms – in that they tend to restore a defined state. Since the 

defined state will be known, it is possible to have incorrect details in these models – in terms of open-loop 
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properties – but the defined state is appropriately restored and in this way the overall model appears valid, 

although it is incorrect in detail. 

In an earlier paper (Belyavin and Cain, 2009) we described the predictive validation of a whole body 

thermal model using experimental data that was independent of that used to construct the original model. 

This is a predictive model of individual thermal state and in principle the model predictions can be 

compared directly with observations drawn from the real world. The particular whole body thermal model 

subjected to validation was a rationally based model composed of sub-models of a number of distinct 

processes including thermal generation, thermal conduction, thermal convection through blood flow, 

sweating, shivering and dynamic changes in blood flow to the skin. In addition the model predictions of 

deep body temperature for comparison with observations are derived from models of the temperature that 

is measured. It was concluded that for the full range of experimental conditions assessed the model did not 

meet a stringent definition of predictive validity. A limited assessment of some component models was 

conducted and it was concluded that the thermal generation model met the criterion of predictive validity 

but the model of sweating did not meet the criterion fully for the set of individuals tested in the 

experiment.  

It was possible to conduct a detailed analysis of the thermal model and its components in this earlier 

analysis because the validation could be based on interval measures – temperatures or sweat rates – and it 

is possible to employ statistical tools such as analysis of variance or multiple regression that enable the 

contribution of different aspects of changes in the external conditions to be assessed in detail. If the 

outcome measures are categorical and less frequently measured in time, it is much harder to achieve the 

same level of detail in the analysis and validation is more difficult. The aim of the present paper is to 

consider the challenge presented by validating models of those elements of human behaviour that are 

embodied in decision making rather than state. 

1.4 Validating Decision-Making Models 

Military decisions are made at a wide range of different levels and frequencies, ranging from those made 

by individuals involved in dismounted combat to strategic levels made at national or international level. 

The full range of models of HBR must include models that represent decision-making at all these levels. 

Validation of decisions that are intrinsically infrequent, such as strategic level decisions, is difficult 

because of the limited volume of data available to support predictive validation and each decision is 

individual in that it depends on the  precise context in which is made. A frequently used approach to the 

modelling of human decisions that are made rapidly under time pressure is to represent these decisions by 

using a pattern recognition algorithm. A choice between two decisions can be described as a multivariate 

discrimination between the outcomes and the simplest form of such an algorithm is the application of a 

linear algorithm to make the choice as proposed by Fisher (1936). The criterion that determines the 

selection of the particular choice is expressed as a function of the perceived cost of making the wrong 

choice and this may depend on context and the personality of the decision-maker. The approach can be 

elaborated by including the quality of the perception of the variables that are the basis of the choice and 

non-linear choice functions can be constructed.  

In whatever way decisions are modelled there is a need for replication of similar decisions if there is to be 

a possibility of applying statistical methods to parameterise and validate the model. It is argued in the 

present paper that compensatory tracking is a source of a stream of similar decisions that can be used to 

parameterise a simple pattern recognition decision-making model. A model of compensatory tracking 

behaviour is described in Belyavin and Farmer (2006) and the application of the same model to describing 

pilot tracking behaviour is described in Belyavin et al (2009). The tracking model is described in Section 2 

and a procedure for fitting the model is described and the possible outcome measures that can be used for 

validation are considered. The implications of the analysis for more complex situations are discussed in 

Section 3. 
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2.0 MODELLING HUMAN TRACKING BEHAVIOUR 

2.1 Background 

There is a long history of development of linear control models to describe human tracking performance 

that represent the human processes of perception and cognition as transfer functions modified by the 

addition of a stochastic remnant. This formulation has been extended in the Optimal Control Model 

(OCM) to encompass the optimisation of the human model parameters such that an objective function 

comprising a weighted combination of control error and control effort can be minimized, making suitable 

assumptions about human performance (Baron et al 1970). This represents human tracking behaviour as a 

continuous activity described by a simple continuous control law. Direct observation of human tracking 

behaviour suggests that in practice the operator makes a series of discrete control decisions rather than a 

continuous flow of movement.   

A two dimensional compensatory tracking task has been constructed in which the participant under test 

uses a joystick that drives X and Y velocity to cancel a velocity disturbance constructed from 6 sinusoids 

with wavelengths ranging from 16 seconds to 1 second. The goal of the task is to maintain a cursor within 

a target region at the centre of the screen. A 20 second sample of a subject’s joystick control input for the 

X axis of the two axis compensatory tracking task is displayed in Figure 1 and it can be observed that 

there are short intervals for which the joystick position is constant and between these intervals there tends 

to be steady linear movement of the joystick. 
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Figure 1: Joystick Position for the Control of X Position in a Compensatory Tracking Task. 

2.2 Discrete Model of Human Tracking Behaviour 

The model of human tracking behaviour is based on five simple assumptions that were established 

following analysis of observed tracking data: 

1) Human control of a continuous psycho-motor task is characterised by a sequence of discrete 

decisions and responses to mismatches between a desired condition and the perceived current 

condition. 

2) There is a lag between the perception of current condition and the implementation of any decision 

to adjust corrective action. 
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3) The decision to adjust corrective action is stochastic and depends on the perceived future 

deviation from the desired condition. 

4) The corrective response is approximately linear in the perceived future deviation from the 

required condition and the current corrective action. 

5) There is a “rest-period” between any decision or action and the subsequent assessment of the 

situation. 

To satisfy these assumptions, the controller comprises a continuous cycle of monitoring current conditions 

coupled with a probabilistic decision to change the current control position. The timings of all the 

monitoring and control elements are based on values drawn from the human performance literature. Intra-

person variability is built into the model through the representation of the variability of individual 

decisions in response to the external environment. Inter-person variability is represented by variation in 

the parameters describing the decisions made to move the controller and the amplitude of the control 

movements. The structure of the controller is displayed in Figure 2. The controller is constructed as a set 

of discrete tasks represented by the green boxes that are executed in sequence according to the logical 

flow. The only modification to a simple linear flow is the decision as to whether to move the control or 

not, represented by the green diamond.  The time taken to perform each task is determined from standard 

human engineering data or by calibration of the model. 

Wait
Perceive

(Delay)
Move?

Move 

control

No

Yes

 

Figure 2: Task cycle for the discrete model of tracking behaviour. 

The key elements of the model are the equations determining how much movement of the stick is required 

and whether to make the move. To test the form of the decision-making model it is assumed that the 

deviation of the cursor position on the screen is perceived exactly. The equation defining the perceived 

required control movement dC is defined as a modified Proportional-Differential (PD) controller in 

Equation (1). The additional term in current controller position was derived from preliminary analysis of 

tracking data as part of the initial model development (Belyavin and Farmer 2006) and the divisor of the 

PD term was included to improve model stability. 
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     (1) 

The variable Err is the current deviation of the cursor from the screen centre, dErr is the rate of change of 

current deviation of the cursor from screen centre, C is the current joystick position, Cref is the neutral 

position of the joystick and μ, η, λ and γ are model parameters. If γ=0 the model is exactly linear in the 

key decision parameters. The probability that a control movement is to be made, P, is determined by the 

perceived required control movement according to Equation (2), where σ and τ are model parameters.  The 
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model form was constructed by preliminary analysis of the incidence of control movements to support the 

development of the Boeing 747-400 pilot model (Belyavin et al 2009). 

 )|(|exp1

1

 


dC
P      (2) 

The stochastic nature of the decision-making process ensures that the model is not exactly linear but it s 

close to linear in practice.  

2.3 Fitting the Model Parameters and Findings 

There is a large number of metrics describing performance on a tracking task that could be used for 

assessing whether a model matches observed performance including the Root Mean Square Error (RMSE) 

of cursor deviation from desired position, the spectral characteristics of joystick movement and the 

properties of the response in terms of the linearity of joystick response. The latter measure can be derived 

if the disturbance function for the tracking task comprises a combination of distinct sinusoids in that if the 

power spectrum of joystick movements includes power at frequencies not contained in the disturbance 

function the source of the power must be non-linearity in the response function. The velocity disturbance 

function is constructed out of a combination of 6 sinusoids and is given by the expression in Equation (3) 






6

1

)(sin

i

ii tωrArD       (3) 

Where the values of ωi and Ai are selected so that the peak in the power spectrum for the disturbance is at 

the fourth wave and the total RMSE of the integrated position disturbance is approximately independent of 

r. As the value of r is varied the required frequency of control movements is varied while maintaining the 

overall positional disturbance. The task is started from a selected large value of t so that the initial velocity 

disturbance is small but the waves are not in phase. 

After preliminary experimentation it was concluded that the model parameters could be estimated for each 

participant independently by matching the linear component of the response model using the estimated 

gains and phases of the joystick response for the sinusoids contained in the velocity disturbance function. 

The tracking model is stochastic in that the “Move?” decision is determined probabilistically. It is 

therefore not possible to do a simple fit between deterministic model outputs and observed outputs to 

define model parameter values, assuming variation in the observations alone. The Nelder-Mead simplex 

method (Nelder and Mead 1965) was selected to perform the fit as it is well suited to the problem of fitting 

stochastic models in that it requires local coherence rather than precise continuity of the objective function 

and convergence is determined based on the variability of the objective function rather than exact 

reproduction of the minimum value. 

The findings for an experiment involving 8 participants were summarised in Belyavin et al (2009). Eight 

participants were tested at three levels of base disturbance frequency, where the amplitude was 

compensated to ensure a constant root mean square error for the cursor as a result of the disturbance. The 

results from each participant and tracking rate were calibrated using the Nelder-Mead procedure by 

matching the observed and modelled gains and phases for the sinusoids with the x and y forcing functions 

using least squares analysis. The parameters fitted for each participant/rate combination were common 

values of μ, η, λ and τ for both x and y, and a value for the time taken to perform the “Wait” task displayed 

in Figure 1. A summary of the fitted parameter values is displayed in Table 1. 
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Table 1: mean values of fitted parameters for the tracking task. 

Parameter Low rate 

(r=0.5) 

Medium 

rate (r=1.0) 

High Rate 

(r=1.5) 

Standard 

Deviation 

μ 1.761 1.584 1.210 0.242 

η 1.093 1.191 1.067 0.188 

λ 0.414 0.545 0.656 0.104 

τ 27.97 29.87 32.01 7.56 

Wait time      0.130      0.085       0.102 0.029 

The parameters were investigated using analysis of variance. It was concluded that Wait time and μ 

differed between participants (p<0.001) and that μ and λ differed between rates (p<0.001). The observed 

and predicted RMSE were compared for the model and observations. The findings are displayed in Figure 

3 and a plot of the observed and expected RMSE for the 8 subjects for tracking at the low rate are 

displayed in Figure 4. 
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Figure 3: Comparison of observed and predicted RMSE for the three different tracking rates. 

From Figure 3 it can be seen that there is generally a good match between mean observed and predicted 

RMSE at all three tracking rates. The spread of RMSE between individuals tends to be larger for the 

observed than the predicted data as shown in the standard errors displayed in Figure 3. This is confirmed 

from the plot of individual scores shown in Figure 4 where the observed values for the ‘poor’ performers 

tend to be larger than those predicted by the model. The model represents a systematic approach to the 

task and ‘poor’ performers may undertake the task in a different way from that proposed by the model.  
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Figure 4: Observed and predicted RMSE for the 8 subjects  
at the low tracking rate including the Y=X line. 

The general linearity of the model is broadly consistent with the observations in that the observed 

percentage power in the joystick response for X is 69% and that for the model is 68% and for Y the 

observed value is 72% and the predicted rate is 61%. A Bode plot for the observed and predicted gains for 

the linear component is displayed in Figure 5, plotting all three task rates on one graph. 
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Figure 5: Observed and predicted linear gains. 

For all except the highest frequency the model reproduces the observed gains for the forcing frequencies 

reasonably well, indicating that the structure of the model is capable of reproducing the observed pattern 

to a reasonable degree. The contribution of the highest frequency to the disturbance is small so that the 

impact of the discrepancy is low. 
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3.0 ISSUES IN VALIDATION 

3.1 Decision-Making Model as a Description of Tracking Behaviour  

From the findings described in Section 2.3 it is clearly feasible to model human performance of a tracking 

task as a series of discrete decisions and reproduce the general characteristics of the performance from the 

point of view of the widely used measure of performance RMSE. It is also clearly feasible to capture a 

significant fraction of the inter-individual variation using a parametric description of the decision-making 

procedure and the times taken to perform elements of the task. This does not constitute a demonstration of 

predictive validity since the same data set has been used to calibrate the model and test whether the model 

describes the observed phenomena. It supports content validity in that it demonstrates that the model can 

be parameterised to span the range of both human variation and task variation. 

Neither of these findings demonstrates construct validity in that a discrete decision-making model is an 

appropriate representation of human tracking performance. It can be observed that when tracking 

behaviour is examined in detail it can be shown that a good description of control behaviour is that control 

inputs remain constant for periods which are interrupted by rapidly changing control inputs. In support of 

this contention, the application of the same model to the control of a Boeing 747-400 during descent to 

land is described in Belyavin et al (2009) and the model provides a reasonable reproduction of the tracking 

behaviour in these very different circumstances where control inputs are made less frequently than for a 

laboratory tracking task.  

On the basis of these sets of evidence it is argued that the repeated discrete decision making model has 

construct and content validity as a model of human tracking performance but it has not been demonstrated 

that a particular model parameterisation has predictive validity. If it is accepted that the model is construct 

and content valid, it can be argued that a laboratory tracking task provides a continuous stream of 

nominally identical decisions that gives access to the investigation of models of a simple human decision 

making process in a systematic manner.  

3.2 Nature of the Individual Decisions in the Tracking Model 

For a laboratory tracking task, the individual decisions involved are likely a priori to be based on a simple 

set of observable parameters so that it is not difficult to construct a pattern that is likely to reflect that used 

by an experimental participant. A key element of the proposed tracking model is the way a decision is 

made as determined by the probability given by Equation (2). Following classical statistical decision 

theory, the natural way to model a pattern recognition decision is to define a criterion on the basis of costs 

of different types of error and to make the choice on the basis of whether the criterion is met or not. 

Representing the decision in a stochastic way has two effects: decisions that would not meet a strict 

criterion will still sometimes be made; the time at which a decision that does meet the criterion will be 

made is determined from a probability distribution.  

The consequences of making a poor joystick move in a laboratory tracking task are relatively minor in that 

corrective action can always be taken later without serious compromise of overall performance. It is 

therefore unremarkable that inappropriate decisions can be permitted by the model without significant 

impact on the other measures of performance. The participant in a compensatory tracking task is acting as 

a negative feedback controller and so long as reasonable negative feedback is provided, overall 

performance is likely to be consistent with observation. It is therefore difficult to be certain as to whether 

such inappropriate decisions occur in practice. With a sufficiently large data set, it may be feasible to look 

for occurrences of supposed irrational responses, such as corrective action when none is warranted or 

control inputs opposite to the observed error, although the timing of perception relative to action is 

stochastic according to the model and this makes identification of specific events difficult. Although the 
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model should not be expected to reproduce these irrational responses specifically, it should reflect these 

behaviours in a stochastic manner if it is representing the constructs thought to give rise to the response.  

From the point of view of decision timing, if the conditions that determine any criterion remain constant, 

the time taken to execute a decision using the probabilistic formulation will have a negative exponential 

distribution. This time distribution can be observed with human decisions in the laboratory and provides 

some indirect evidence that the model may be a plausible representation of this aspect of human decision 

making.   

3.3 Validating Models of Decision Making in General 

If the argument that a compensatory tracking task provides a stream of decisions that are handled by the 

human operator in the same way as any other stream of relatively low level pattern recognition decisions is 

accepted, some of the same models and principles should apply in other cases as well. In models of 

tactical conflict it is clearly feasible to define a restricted set of choices that a commander may make and 

then design a pattern recognition classifier to make the choice as each decision point is encountered. There 

are two lessons that can be drawn from the tracking model analysis. All military decision making has the 

objective of modifying the state of the world so that it is closer to a desired state and in that sense the 

management of the state of the world mirrors the activities of the negative feedback controller in the 

tracking task.  

The analysis of the tracking model suggests that the use of a high level measure of performance such as 

mean RMSE alone does not reflect the variability of decision making between individuals and effort 

should be made to seek a range of observed streams of decisions so that any model may be tested in its 

ability to represent the variability. The model of the decision process in the tracking task indicates that the 

timing of decisions may itself be stochastic in any stream of decisions. This may be an element in any 

other stream of similar decisions and should be considered when validating other decision making models. 

While aggregate measures such as RMSE speak to the normative accuracy of a model, they obscure the 

plausible variability that is often desired in HBR and thus are insufficient for assessing a model’s validity. 

It is these unexpected excursions from normative behaviour that can result in surprise and confusion or 

confound systems predicated on rational, normative behaviour; incorporating such plausible variability in 

HBRs is expected to enrich training systems or lead to more robust systems so it is important to capture 

and validate these details adequately.   

On this basis, assessing construct validity for models of low level decision making should include 

consideration of both how a choice of course of action is made and the mechanisms in the model that 

determine timing. Analysis of content validity should include consideration of how individual variability 

is represented as well as the range of external conditions. In considering predictive validity high level 

outcome measures can be used to provide an indication of whether a model is sound, but rigorous 

assessment of the timing elements of the model is likely to involve assessment of the decision pattern over 

time. 
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